1,079 research outputs found

    The distribution of annihilation luminosities in dark matter substructure

    Full text link
    We calculate the probability distribution function (PDF) of the expected annihilation luminosities of dark matter subhalos as a function of subhalo mass and distance from the Galactic center using a semi-analytical model of halo evolution. We find that the PDF of luminosities is relatively broad, exhibiting a spread of as much as an order of magnitude at fixed subhalo mass and halo-centric distance. The luminosity PDF allows for simple construction of mock samples of gamma-ray luminous subhalos and assessment of the variance in among predicted gamma-ray signals from dark matter annihilation. Other applications include quantifying the variance among the expected luminosities of dwarf spheroidal galaxies, assessing the level at which dark matter annihilation can be a contaminant in the expected gamma-ray signal from other astrophysical sources, as well as estimating the level at which nearby subhalos can contribute to the antimatter flux.Comment: 10 pages, 5 figures. Replaced with version accepted for publication in Phys. Rev.

    Probing the Shape of the Galactic Halo with Hyper-Velocity Stars

    Full text link
    Precise proper motion measurements (sigma_mu ~ 10 mkas/yr) of the recently discovered hyper-velocity star (HVS) SDSS J090745.0+024507 would yield significant constraints on the axis ratios and orientation of a triaxial model for the Galactic halo. Triaxiality of dark matter halos is predicted by Cold Dark Matter models of galaxy formation and may be used to probe the nature of dark matter. However, unless the distance to this star is determined to better than 10%, these constraints suffer from one-dimensional degeneracies, which we quantify. We show how proper motion measurements of several HVSs could simultaneously resolve the distance degeneracies of all such stars and produce a detailed picture of the triaxial halo. Additional HVSs may be found from radial velocity surveys or from parallax/proper-motion data derived from GAIA. High-precision proper-motion measurements of these stars using the Space Interferometry Mission (SIM PlanetQuest) would substantially tighten the constraints they yield on the Galactic potential.Comment: 7 pages, matches printed versio

    Dark Matter Halos: Shapes, The Substructure Crisis, and Indirect Detection

    Full text link
    In this proceeding, we briefly review three recent results. First, we show that halos formed in simulations with gas cooling are significantly rounder than halos formed in dissipationless NN-body simulations. The increase in principle axis ratios is ή(c/a) 0.2−0.4\delta (c/a) ~ 0.2 - 0.4 in the inner halo and remains significant at large radii. Second, we discuss the CDM substructure crisis and demonstrate the sensitivity of the crisis to the spectrum of primordial density fluctuations on small scales. Third, we assess the ability of experiments like VERITAS and GLAST to detect γ\gamma-rays from neutralino dark matter annihilation in dark subhalos about the MW.Comment: 7 Pages, 3 Figures, Review to appear in The Proceedings of the Fifth International Workshop on the Identification of Dark Matte

    Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics

    Full text link
    We perform a pixel-by-pixel analysis of 467 galaxies in the GOODS-VIMOS survey to study systematic effects in extracting properties of stellar populations (age, dust, metallicity and SFR) from pixel colors using the pixel-z method. The systematics studied include the effect of the input stellar population synthesis model, passband limitations and differences between individual SED fits to pixels and global SED-fitting to a galaxy's colors. We find that with optical-only colors, the systematic errors due to differences among the models are well constrained. The largest impact on the age and SFR e-folding time estimates in the pixels arises from differences between the Maraston models and the Bruzual&Charlot models, when optical colors are used. This results in systematic differences larger than the 2{\sigma} uncertainties in over 10 percent of all pixels in the galaxy sample. The effect of restricting the available passbands is more severe. In 26 percent of pixels in the full sample, passband limitations result in systematic biases in the age estimates which are larger than the 2{\sigma} uncertainties. Systematic effects from model differences are reexamined using Near-IR colors for a subsample of 46 galaxies in the GOODS-NICMOS survey. For z > 1, the observed optical/NIR colors span the rest frame UV-optical SED, and the use of different models does not significantly bias the estimates of the stellar population parameters compared to using optical-only colors. We then illustrate how pixel-z can be applied robustly to make detailed studies of substructure in high redshift galaxies such as (a) radial gradients of age, SFR, sSFR and dust and (b) the distribution of these properties within subcomponents such as spiral arms and clumps. Finally, we show preliminary results from the CANDELS survey illustrating how the new HST/WFC3 data can be exploited to probe substructure in z~1-3 galaxies.Comment: 37 pages, 21 figures, submitted to Ap

    Assembly bias and the dynamical structure of dark matter halos

    Full text link
    Based on the Millennium Simulation we examine assembly bias for the halo properties: shape, triaxiality, concentration, spin, shape of the velocity ellipsoid and velocity anisotropy. For consistency we determine all these properties using the same set of particles, namely all gravitationally self-bound particles belonging to the most massive sub-structure of a given friends-of-friends halo. We confirm that near-spherical and high-spin halos show enhanced clustering. The opposite is true for strongly aspherical and low-spin halos. Further, below the typical collapse mass, M*, more concentrated halos show stronger clustering whereas less concentrated halos are less clustered which is reversed for masses above M*. Going beyond earlier work we show that: (1) oblate halos are more strongly clustered than prolate ones; (2) the dependence of clustering on the shape of the velocity ellipsoid coincides with that of the real-space shape, although the signal is stronger; (3) halos with weak velocity anisotropy are more clustered, whereas radially anisotropic halos are more weakly clustered; (4) for all highly clustered subsets we find systematically less radially biased velocity anisotropy profiles. These findings indicate that the velocity structure of halos is tightly correlated with environment.Comment: 5 pages, 2 figures, accepted for publication in Ap

    Luminous Satellites of Early-Type Galaxies I: Spatial Distribution

    Full text link
    We study the spatial distribution of faint satellites of intermediate redshift (0.1<z<0.8), early-type galaxies, selected from the GOODS fields. We combine high resolution HST images and state-of-the-art host subtraction techniques to detect satellites of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 magnitudes fainter and as close as 0."5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogenous background/foreground population and a satellite population with a power law radial profile and an elliptical angular distribution. We detect a significant population of satellites, Ns =1.7 (+0.9,-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast.The average projected radial profile of the satellite distribution is isothermal, gamma_p= -1.0(+0.3,-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining phi to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of phi = 0 and |phi| less than 42 degrees at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.Comment: 21 pages, 16 figures, Accepted for publication in Ap
    • 

    corecore